ĺ	ATIO	NAL TAIT	TUNG U	NIVERSI	F	Fabrio		n and	char	acteri		on of	Mo	S_2/PA	ANI/	CNT	S		
					CO]	mpos	ite II	IM TO	r thi	1 flex	1ble	SOI1d	-state	e sup	erca	pacit	ors		
	A	bstrac	ct	二人	流化金	泪/聚	苯胺/	奈米碳	設管複	合薄膜	莫應用	於可	撓曲的	り固 態	超級	電容	之研究	で し	
(超約	及電容器	器是一	種新的	勺能量億	诸存元件	,具有利	穩定快速	充放電	、高功率	密度和	能量密	度、等傷	を點。本	研究之	固態超	級電容	器,使	用本
l	實馬	贪室開 到	资分散	二硫(し鉬的ス	方法,製	備出具	有大表面	積、類	似石墨烯	的層狀	結構的	單層二磅	乱化鉬奈	米片,	結合高	導電、	灵好偽	電容
l	性質	質的聚支	 	再利戶	月正壓立	過濾 系統	的製膜	支術製備	出三維	結構的複	合膜,	具有可	撓曲的性	上質 ,可	增加空	間上的	靈活度	。為使	封裝
l	時魚	展漏液等	亨危險	,因止	上使用 F	VA-H ₂ S	O_4 電解 i	亥製作固	態電容	的電解液	。將固	態電容	串聯後工	作電壓	可提升	,大幅:	增加其原	医用性	0
		Result												40	00				
		7	7	F		F	$ \rightarrow $	5						35 30	00 -				
													St X	25 (). 20	00 -		N		
							1		Serve-	F.	F AC			15 Intensit	00			٨	
		奈米碳	管	二硫	化鉬	聚苯	胺				Fig		3.0	10			h		

(a) 固態超級電容器 0.45A 電流下串聯的恆流充電/放電曲線

(a)以不同角度下進行 50 mV/s 循環伏安圖 (b)可撓取複合膜實際圖

Table 1. 二硫化鉬、聚苯胺和奈米碳管複合材料單位電容、穩定性比較圖

Materials	Electrolytes	Voltage (V)	Specific capacitance	Stability	Ref.	
MOS ₂ /PANI/ CNTs	H ₂ SO ₄ /PVA	-0.2 ~ 0.8	942.F/g (1 A/g) two electrodes	76.9 % (1000cycles at 2 A/g)	This work	
GO / PPy	1M Na ₂ SO ₄	-0.1~ 0	438 F/g (1 A/g)	80.2% (2000 cycles at 1 A/ g)	ACS Appl. Mater. Interfaces, 2017, 9 (26), pp 21763– 21772	
RGO/PANI	1 M KOH	-0.2 ~ 0.8	669 F/g (2 mV/s)	87.2 % (3000 cycles at 100 mV/s)	ACS Appl. Mater. Interfaces, 2016, 8 (17), pp 11179– 11187	
GO / PPv	1 M KCl	-0.5~0.5	152 mF/cm ² (10 mV/s)	88% (10000 cycles	<i>J. Mater. Chem</i> 2014,10 1,pp	

