

Late-Stage Ortho-C-H Bond Arylation and Alkylation of 9(10H)-Acridone Utilizing 2-Pyridinyl as a Removable Directing Group

ABSTRACT

A synthetic methodology for the palladium-catalyzed ortho-C-H bond arylation and alkylation of 9(10H)-acridanone with potassium aryl/alkyltrifluoroborate was presented. In the study, 2-pyridinyl was employed as a directing group toward orthoselective C-H bond activation. The key palladacycle was prepared by the stoichiometric reaction of 9(10H)-acridanone and palladium acetate in acetic acid in a good yield. Its absolute structure was confirmed by X-ray crystallography. p-Benzoquinone (BQ) and tertbutyl alcohol were the key promoter and best solvent, respectively for the reaction. A variety of ortho arylated and alkypated N-(2pyridinyl)-9(10H)-acridones were synthesized in modest to excellent yields. Finally, the 2-pyridinyl group can be easily removed by the treatment of MeOTf and Hydrazine to afford ortho-arylated and alkylated 9(10H)-acridanone in good yields.

Table 1. Optimization Reaction

Table 2. Substrate Scope

6	tert-butylalcohol	3 (equiv)	4 (equiv)	120	93
7	tert-butylalcohol	4 (equiv)	4 (equiv)	120	94
8	tert-butylalcohol	5 (equiv)	4 (equiv)	120	71
9	tert-butylalcohol	3 (equiv)	0.5 (equiv)	120	38
10	tert-butylalcohol	3 (equiv)	1 (equiv)	120	51
11	tert-butylalcohol	3 (equiv)	2 (equiv)	120	53
12	tert-butylalcohol	3 (equiv)	3 (equiv)	120	54
13	tert-butylalcohol	3 (equiv)	4 (equiv)	120	79
14	tert-butylalcohol	3 (equiv)	4 (equiv)	80	79
15	tert-butylalcohol	3 (equiv)	4 (equiv)	90	83
16	tert-butylalcohol	3 (equiv)	4 (equiv)	100	85
17	tert-butylalcohol	3 (equiv)	4 (equiv)	110	82
18	<i>tert</i> -butylalcohol	3 (equiv)	4 (equiv)	120	93

^aYields were determined by 1H NMR spectroscopy analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard.

Table 3. Proposed Mechanism

Reference: [1] Chu, J.-H.; Chen, C.-C.; Wu, M.-J. Organometallics **2008**, 27, 5173-5176. [2] Chu, J.-H.; Wu, C.-C.; Chang, D.-H.; Lee, Y.-M.; Wu, M.-J. Organometallics **2013**, 32, 272-282.