

氮摻雜石墨烯量子點/鐵錯合物 作為高效析氧反應電催化劑

N-Doped Graphene Quantum Dots/Fe(CO)₂(NO)₂ Composite as an Efficient Oxygen Evolution Reaction Electrocatalyst

摘	要
---	---

為了解決能源危機及緩解溫室氣體造成的全球暖化,環保的新興能源技術不斷崛起,其中的一項可再生能源水分解包含了析氫、析氧反應,但由於析氧反應涉及了多質子耦合及四個電子的轉移,所以在動力學上非常緩慢,被視為是目前水分解應用上最主要的障礙,於是開發出高效能、資源豐富且耐用的析氧電催化劑對於能源轉換是至關重要的。

本研究以三溴化吡啶 (PyBr₃) 利用超音波輔助震盪剝離石墨,產生懸浮於乙醇的石墨烯片,再與氮原子摻雜源的聚乙烯 亞胺 (PEI) 混合進行水熱法合成,製造出兩相的氮摻雜石墨烯量子點 (GQDs),兩相分別為親水性及疏水性,本次提取 疏水性量子點混合自合成的過渡金屬錯合物 (Fe(CO)₂(NO)₂),文獻中提及常見的Fe,Co,Ni金屬在水分解中具有相當 高的活性,並因其電子組成,能取代具有高活性卻相當稀有的貴金屬,因此本研究以氮摻雜石墨烯量子點/鐵錯合物作 為電化學中高效析氧反應的催化劑,能有效地降低塔佛斜率,提升析氧反應的效率,它的表現與現今析氧效能最優異

的RuO2貴金屬相當。

 $I_{\text{retended}} = 3010 \quad 10 \quad (11)$

Figure 3. 材料 (a) Raman 光 語圖 (b) 螢 光 猝滅時間解析圖。 Table 1. 螢 光 猝滅時間解析比較。), pp 35025-35038	
材料	Area (%)	τ_1 (ns)	Area (%)	$\tau_2(ns)$	Average τ (ns)	Fe-S-G	1.58 V	35	88 mV/dec	<i>ACS Catal.</i> , 2017 , <i>7</i> (4), pp 2381-2391	
GQDs	35.71	15	64.29	5	8.6	CoP(MoP)-CoMoO ₃	1.5 V	200	105 mV/dec	ACS Appl. Mater.	
$GQDs/Fe(CO)_2(NO)_2$	36.67	3.2	63.33	1.1	1.86	WCN				pp 6890-6899	

結論							
隨震盪時間	同使它剥離成少數	跂層結構,以八小	、時最佳,透過	拉曼鑑定可觀夠	察到2D-band訊號	峰,而GQDs在	經過鐵錯合
物的合成後	色,仍保有碳材的	三種特徵峰。FT-]	[R鑑定能有效語	登實其結構組成	是由GQDs置换打	卓C-O鍵。在析	氧測試中發
現GQDs本	身具有較差的效能	,但混合Fe(CO) ₂	(NO)2後,除了	反應面積大,	還擁有3d過渡金屬	屬的電子特性,	使電流密度
提升了123	mA/cm ² ,塔佛斜率	率降低了80 mV/de	x,電位提前了	0.06 V,是可成	达為替代貴金屬R	uO2的環保高效	能析氧電催
化劑。							