る 这 臺 水 NATIONAL TAITUNG	大学 Fabrication and Characterizations of Coin Cell								
Supercapacitors Based on MoS / PPv / SWCNTs Composito Films									
Abstract	二硫化钼/聚吡咯/單壁奈米碳管複合薄膜應用於鈕扣電池型超級電容器之研究與製備								
超級電容器是一	種新的能量儲存元件,具有穩定快速充放電、高功率密度和能量密度等優點。本研究之超級電容器,使用本實驗								
室開發分散二硫	化鉬的方法,製備出具有大表面積且與石墨烯的層狀結構相似的二硫化鉬奈米片,結合高穩定、良好偽電容性質								
的聚吡咯,利用	正壓過濾製膜技術製備出三維結構的複合膜,以及使用在封裝時無漏液情形等優勢的 PVA / H ₂ SO ₄ 製作的固態電								
解液,搭配廣泛	.應用的鈕扣電池,製作成高應用價值的鈕扣電池型超級電容。								
Result	a) b)								

Figure 1. 製備複合膜實驗流程、材料間堆疊及組裝過程機制圖

Figure 2. 電子顯微鏡圖 (a) 穿透式顯微鏡 (a) 掃描式顯微鏡

Figure 5. 鈕扣電池型超級電容的溫度測試

(a) 在不同溫度下進行 1V/s 循環伏安圖 (b) 連續變溫電容保持率

Table 1. 二硫化钼、聚吡咯和單壁奈米碳管複合材料單位電容及穩定性比較

Materials	Current density	Specific capacitance	Stability	Ref.	
MoS ₂ / PPy / SWCNTs	2 mA/cm ²	331 mF/cm ²	92.1% (500 cycles in 50 mA/cm ²)	This work	
MoS ₂	2 mA/cm ²	114.5 mF/cm ²	80% (400 cycles in 3 mA/cm ²)	<i>ACS Omega</i> 2018 , <i>3</i> , 12, 17466-17473	
Er-GO / PPy	0.5 mA/cm ²	216 mF/cm ²	91.3% (1000 cycles in 3 mA/cm ²)	<i>RSC Adv</i> 2015 , <i>5</i> , 102643-102651	
CNT / Co ₃ O ₄	0.053 mA/cm ²	52.6 mF/cm ²	91% (1000 cycles in 0.212 mA/cm ²)	<i>Small</i> 2015 , 11, 7, 854-861	

	0	100	200	300	400	500	0	50	100	150	200	250	30
Cycle							Z' (ohm)						

IUM BATTEF CR2032

g)

Figure 3. 鈕扣電池型超級電容

(a) 不同毫伏掃速下的循環伏安法曲線

- (b) 在 2~50 mA/cm² 不同的電流密度下的恆電流充放曲線
- (c) 在不同電流密度下的比電容值
- (d) 能量密度和功率密度分布圖 (Ragone plot)
- (e) 在 50 mA/cm² 恆定電流密度下 500 次充放電循環
- (f) 鈕扣電池型超級電容能斯奎特圖
- (g) 鈕扣電池型超級電容真實樣品圖

Conclusion

本研究選擇實驗室開發分散二硫化鉬的方法,結合奈米碳管 和自行合成的聚吡咯, 並以正壓過濾製成複合膜。將複合膜 製作成鈕扣電池型超級電容,在2mA/cm²電流密度下,其電 容值為 331 mF/cm², 經過在 50 mA/cm² 電流密度充放電循環 500次後,其電容的維持率為92.1%,將其串聯後可提升電容 值,搭配廣泛應用的鈕扣電池,大幅增加其應用性質。